Insects as a Nitrogen Source for Plants

نویسندگان

  • Scott W. Behie
  • Michael J. Bidochka
چکیده

Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively) are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF) provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants.

Most plants obtain nitrogen through nitrogen-fixing bacteria and microbial decomposition of plant and animal material. Many vascular plants are able to form close symbiotic associations with endophytic fungi. Metarhizium is a common plant endophyte found in a large number of ecosystems. This abundant soil fungus is also a pathogen to a large number of insects, which are a source of nitrogen. It...

متن کامل

Role of nitrogen content of pea (Pisum sativum L.) on pea aphid (Acyrthosiphon pisum Harris) establishment

The leaf nitrogen content is generally accepted as an indicator of food quality and as a factor affecting host selection by phytophagous insects. The alate pea aphids (Acyrthosiphon pisum Harris, Aphididae) were given a choice among non-nodulated pea plants (Pisum sativum L.) supplied with one of four nitrate-N levels (0, 3, 15 and 30 mM). When whole plants were exposed to aphids for 7 days, th...

متن کامل

مقایسه پارامترهای رویشی و عملکرد ریشه گیاه دارویی شیرین‌بیان (Glycyrrhiza glabra) در سیستم‌های مختلف کشت بدون خاک و کشت خاکی تحت تأثیر منابع مختلف نیتروژن

Production of medicinal crops in soilless culture systems and controlled environments provides an opportunity for increasing the quantity and quality of primary materials of medicinal plants. A factorial experiment based on completely randomized design was carried out with four culture systems (aeroponics, nutrient film technique, classic hydroponics and soil) and three different nitrogen sourc...

متن کامل

A Decision Tree for Technology Selection of Nitrogen Production Plants

Nitrogen is produced mainly from its most abundant source, the air, using three processes: membrane, pressure swing adsorption (PSA) and cryogenic. The most common method for evaluating a process is using the selection diagrams based on feasibility studies. Since the selection diagrams are presented by different companies, they are biased, and provide unsimilar and even controversial results. I...

متن کامل

Quantification of insect nitrogen utilization by the venus fly trap Dionaea muscipula catching prey with highly variable isotope signatures.

Dionaea is a highly specialized carnivorous plant species with a unique mechanism for insect capture. The leaf is converted into an osmotically driven trap that closes when an insect triggers sensory trichomes. This study investigates the significance of insect capture for growth of Dionaea at different successional stages after a fire, under conditions where the prey is highly variable in its ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013